ohi logo
OHI Science | Citation policy

1 Summary

This script generates the “need” layer for the artisanal opportunities goal.

2 Updates from previous assessment

One more year of data. Updated so that pop_weights data is also read in through the WDI package, and saved as annual data instead of only the most recent year.

3 Data Source

Downloaded: 2023-07-12

Description:
GDP adjusted per capita by PPP (ppppcgdp) http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD Reported at country scale.

GDP per capita based on purchasing power parity (PPP). PPP GDP is gross domestic product converted to international dollars using purchasing power parity rates. An international dollar has the same purchasing power over GDP as the U.S. dollar has in the United States. GDP at purchaser’s prices is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant international dollars based on the 2011 ICP round.

Data is available directly to R through the WDI package.

Time range: 1990-2022


4 Methods

4.1 Setup

knitr::opts_chunk$set(fig.width = 6, fig.height = 4, fig.path = 'figs/', message = FALSE, warning = FALSE)
if (!require(ohicore)){
  devtools::install_github('ohi-science/ohicore@dev')
  library(ohicore)
}
if (!require(librarian)){
  install.packages("librarian")
  library(librarian)
}
librarian::shelf(
  tidyverse,
  here,
  janitor,
  jsonlite,
  plotly,
  WDI,
  modelr
) 
## if the data has been updated you will need to re install the WDI package to get the updated data 
update.packages("WDI")
### directory paths and relevant files
source(here::here('workflow', 'R', 'common.R'))
current_year = 2023
version_year = paste0("v", current_year)
version_dir = here::here("globalprep", "ao", version_year)

4.2 Download and save data

Skip if you have already downloaded data.

### check website to see what years are available
yr_start = 1990
yr_end   = 2022

### get description of variables    
### NOTE: these descriptions appear out of date, they aren't in sync with the definitions of the World Bank):
indicators <-  data.frame(WDI_data[[1]])

head(indicators)
head(WDI_data)
str(WDI_data) 
### current dollars (influenced by inflation, not being used)
indicators[grep("NY.GDP.PCAP.PP.CD", indicators$indicator), ] 
# constant dollars. grep helps identify rows to select based on a string. (used this data)
indicators[grep("NY.GDP.PCAP.PP.KD", indicators$indicator), ] 

### download the data using the WDI package 
### This is the data we are going to work with. Create a variable for the data frame
gdppcppp_raw <- WDI(
  country = "all",
  indicator = "NY.GDP.PCAP.PP.KD", 
  start = yr_start, end=yr_end)
summary(gdppcppp_raw)

### check if 'raw', 'intermediate', and 'final' folders exist in the current assessment folder, if not, then create them
if (!file.exists(file.path(version_dir, "raw"))){
  dir.create(file.path(version_dir, "raw"))
} 

if (!file.exists(file.path(version_dir, "intermediate"))){
  dir.create(file.path(version_dir, "intermediate"))
}

if (!file.exists(file.path(version_dir, "output"))){
  dir.create(file.path(version_dir, "output"))
}

date <- Sys.Date()

### Save the file into the raw folder
readr::write_csv(gdppcppp_raw, here(paste0(version_dir, '/raw/raw_gdppcppp_', date,'.csv'))) 
### Save file with date, as WDI data changes over even short periods of time. 
### For instance, the Mauritania GDP data changed by an order of magnitude over the course of a week. 
### We want to preserve the date it was downloaded so that data is not being overwritten every time we run the script. 
new_saved_date <- "2023-07-12" # update when new data are downloaded.
old_saved_date <- "2022-06-30"

new <- here::here(version_dir, "raw", paste0('raw_gdppcppp_', new_saved_date,'.csv')) %>% 
  readr::read_csv()

old <- here::here("globalprep", "ao", paste0("v", current_year-1), 
                  "raw", paste0("raw_gdppcppp_", old_saved_date, ".csv")) %>% 
  readr::read_csv() %>%
  dplyr::select(country, old_value = NY.GDP.PCAP.PP.KD, year)

compare <- dplyr::left_join(new, old, by = c("country", "year"))  %>%
  dplyr::filter(year==current_year-2)
 
plot <- ggplot(compare, aes(x=NY.GDP.PCAP.PP.KD, y=old_value)) + 
  geom_point() + 
  geom_abline(slope = 1, intercept = 0, color="red")

ggplotly(plot)

4.3 Gapfilling 1: Linear Regression within a country’s data

For the first case, if there is only one value use this value for all years. This is not ideal, but likely better than other forms of gapfilling

### Reorganize to create cells for countries that have missing values for some years
gdppcppp_clean <- here::here(version_dir, "raw", paste0('raw_gdppcppp_', new_saved_date,'.csv')) %>% #date here should also to match filename above 
  readr::read_csv()%>% 
  dplyr::select(country, value=NY.GDP.PCAP.PP.KD, year) %>%
  dplyr::filter(year >= 2005) %>%
  tidyr::complete()

head(gdppcppp_clean)
summary(gdppcppp_clean) # 473 NAs v2023

### Drop Countries with no data and
### Gapfill countries with only 1 year of data with that single value
gdppcppp_gf_1 <- gdppcppp_clean %>%
  dplyr::group_by(country) %>%
  ### counts the numbers of non-missing values for each country (logical TRUEs regarded as one)
  dplyr::mutate(value_num = sum(!is.na(value))) %>% 
  ### filter out the countries with no data between 2005 and 2019 
  dplyr::filter(value_num > 0) %>%    
  ### mean() function is used on regions with one year of data, applies that single value to all NAs for that region
  dplyr::mutate(value = ifelse(value_num==1, mean(value, na.rm=TRUE), value)) %>%  
  dplyr::ungroup() 

head(gdppcppp_gf_1)
summary(gdppcppp_gf_1) # 41 NAs v2023 (mostly lower from dropping countries with no data)

When a country has more than one value (but not a complete series), a within-country regression model is used to predict the missing values.

### Predict values using a linear regression with 'year' as an independent variable 
### Create new column with these predicted values
### Fill in the remaining NA values using the predicted values
### See https://r4ds.had.co.nz/many-models.html for explanation on workflow

### Define the model
country_model <- function(df) {lm(value ~ year, data = df)}

gdppcppp_gf_2 <- gdppcppp_gf_1 %>% 
  dplyr::group_by(country) %>% 
  tidyr::nest() %>% 
  dplyr::mutate(
    ### Apply the model to all country groupings
    model = purrr::map(data, country_model),
    ### Use the trained model to get predicted values
    predictions = purrr::map2(data, model, add_predictions)) %>% 
  tidyr::unnest(cols = c(predictions)) %>% 
  dplyr::select(-data, -model, prediction = pred) %>%
  dplyr::mutate(
    gapfilled = dplyr::case_when(is.na(value) | value_num == 1 ~ 1, T ~ 0),
    value = dplyr::case_when(is.na(value) ~ prediction, T ~ value),
    method = dplyr::case_when(
      value_num == 1 ~ "gapfilled using one year of data",
      gapfilled == 1 & value_num > 1 ~ paste0("lm based on N years data: ", value_num),
      T ~ as.character(NA))) %>% 
  dplyr::ungroup()
  
summary(gdppcppp_gf_2) # no more NAs because everything has been gap-filled.

4.4 Calculate rescaled values

This is performed by taking the natural log of each value and then dividing by the 95th quantile of values across all years (from 2005 to current data year).

##
### Values at the 95th Quantile or greater are given a rescaled score of '1' (the highest value)
gdppcppp_rescale <- gdppcppp_gf_2 %>%
  dplyr::mutate(
    ### gives a single value - the 95th quant (v2020=57245.33, v2022=58817.7, v2023 = 58780)
    quantile_95 = quantile(value, probs=0.95),
    ### where does value scale relative to 95th quantile
    value_stand = value/quantile_95,
    ### Replace values greater than the 95th percntile with 1
    value_stand = ifelse(value_stand > 1, 1, value_stand)) %>% 
  ### rename value_stand 'score'
  dplyr::select(country, year, value, score=value_stand, gapfilled, method) 

summary(gdppcppp_rescale)
head(gdppcppp_rescale)

### Check to see if scores make sense - anything above reference point (quant_95) should = 1
### everything below it should have a value between 0 and 1 
rescale_vis <- ggplot(gdppcppp_rescale) +
  geom_point(aes(x = value , y = score, text = country))

ggplotly(rescale_vis)

4.5 Convert country names to ohi regions

#manually change names as needed 

gdppcpp_rename <- gdppcppp_rescale


### Function to add OHI region ID based on country name
d_stand_rgn <- ohicore::name_2_rgn(
  df_in = gdppcpp_rename, 
  fld_name='country', 
  flds_unique=c('year'))

### v2021: Lots of warning messages about missing regions from lookup table; 
### lots of them are broad areas (e.g. "Arab World" and "fragile regions"), 
### some are landlocked areas like N. Macedonia and Eswatini. 
### Check to make sure there aren't any regions that need to be reported at different scales 
### China, Hong Kong and Macao are all reported separately, combine into one
### Puerto Rico and Virgin Islands are also reported separately, although Value is NA for all years for Virigin Islands so we don't see it as a duplicate here. Included in pop_weights file creation in case this changes. 

### This should match the duplicate regions
dplyr::filter(d_stand_rgn, rgn_id == 209)

### Combine the duplicate regions (we report these at lower resolution)
### In this case, we take the average score weighted by population.

##2023 updated so that population data is read in through the WDI package 
#iso2c codes VI (Virgin Islands USA), PR (Puerto Rico), CN (China), HK (Hong Kong SAR), MO (China, Macao SAR, China)

population_weights <- WDI(
  country = c("VI", "PR", "CN", "HK", "MO"),
  indicator = "SP.POP.TOTL", 
  start = yr_start, end=yr_end) %>%
  select(country, population = SP.POP.TOTL, year)


### Weight the `score`, `value`, and `gapfilled` column by population
population_weights_all <- d_stand_rgn %>%
  dplyr::left_join(population_weights, by=c("country", "year")) %>%
  dplyr::mutate(population = ifelse(is.na(population), 1, population)) # If no value available, input 1 (these values will not change)
  
#save the population weights file
population_weights_all %>% select(country,population,year) %>%  write_csv(file.path("globalprep", "supplementary_information", version_year, "pop_weights.csv"))

d_stand_rgn <- population_weights_all %>% dplyr::group_by(rgn_id, year, method, gapfilled) %>% 
  dplyr::summarize(score = weighted.mean(score, population), # weight the single score value by pop.
            value = weighted.mean(value, population)) %>%
  dplyr::ungroup() 

### check again:
dplyr::filter(d_stand_rgn, rgn_id == 209)

### Removed `Azerbaijan` (255) because the adjacent body of water is a sea not the ocean - is this not done in names2region? 
d_stand_rgn <- d_stand_rgn %>%
  dplyr::filter(rgn_id <= 250)

summary(d_stand_rgn) # no NAs

### save the cleaned gdppcppp for other goals
gdppcppp_data <- d_stand_rgn %>%
  dplyr::select(rgn_id, year, value)

readr::write_csv(gdppcppp_data, here::here(version_dir, "intermediate", "gdppcppp_ohi.csv"))

4.6 Gapfilling: part 2

In this case, we gapfill regions with no data using means based on UN-designated geopolitical levels.

### how is this different from Mel's georegion function in ohicore? 
UNgeorgn() 
head(UNgeorgn)
summary(UNgeorgn)

### Create dataframe pairing each UN geopolitical region id with a year from 2005 to current
### Assign georegion labels to each region for each level (r0, r1, r2)
d_stand_gf <- data.frame(year=min(d_stand_rgn$year):max(d_stand_rgn$year)) %>% 
  base::merge(UNgeorgn, by = NULL)

### Combine the two data frames by region id and year
### Calculate means across increasing geopolitical levels (e.g. r2, r1), using the highest resolution possible
d_stand_gf <- d_stand_gf %>%  
  dplyr::left_join(d_stand_rgn, by = c("rgn_id", "year")) %>%
  dplyr::group_by(r2_label, year) %>%
  dplyr::mutate(r2_value = mean(score, na.rm=TRUE)) %>%
  dplyr::ungroup() %>%
  dplyr::group_by(r1_label, year) %>%
  dplyr::mutate(r1_value = mean(score, na.rm=TRUE)) %>%
  dplyr::ungroup() %>%
  dplyr::group_by(r0_label, year) %>%
  dplyr::mutate(r0_value = mean(score, na.rm=TRUE)) %>%
  dplyr::ungroup()
summary(d_stand_gf) 

### For `score` cells that still have NA values (still several hundred):
### Check to see if r2 has a value, if so use that to gapfill `score`, otherwise use r1, otherwise use r0
d_stand_gf <- d_stand_gf %>%
  dplyr::mutate(
    gapfilled = dplyr::case_when(
      is.na(score) & !is.na(r2_value) ~ 1,
      is.na(score) & !is.na(r1_value) ~ 1,
      is.na(score) & !is.na(r0_value) ~ 1,
      T ~ gapfilled),
    method = dplyr::case_when(
      is.na(score) & !is.na(r2_value) ~ "UN_geopolitical region avg, r2",
      is.na(score) & !is.na(r1_value) ~ "UN_geopolitical region avg, r1",
      is.na(score) & !is.na(r0_value) ~ "UN_geopolitical region avg, r0",
      T ~ method),
    score = dplyr::case_when(
      is.na(score) & !is.na(r2_value) ~ r2_value,
      is.na(score) & !is.na(r1_value) ~ r1_value,
      is.na(score) & !is.na(r0_value) ~ r0_value,
      T ~ score)) 

### Load in low population areas
low_pop()

### filter out regions that have populations > 3000 and keep NA values 
low_pop <- low_pop %>%
  dplyr::filter(est_population < 3000 | is.na(est_population)) 

### make a vector of low population areas 
low_pop_vector <- c(low_pop$rgn_id) 

### Use NA values in score column for low population areas
d_stand_gf <- d_stand_gf %>% 
  mutate(score = dplyr::case_when(rgn_id %in% low_pop_vector ~ NA_real_, T ~ score))

### Check number of NAs in score column 
### v2022 has 340 (17 years of data and 20 low pop countries)
### v2023 has 360 (18 years of data and 20 low pop countries)
summary(d_stand_gf)

4.7 Save the data

# Save dataframe with adjusted, gapfilled, and rescaled score information
final <- d_stand_gf %>%
  dplyr::select(rgn_id, year, value = score)

readr::write_csv(final, here::here(version_dir, "output", "wb_gdppcppp_rescaled.csv"))

### Save dataframe with gapfilled method and status information
### Note this includes regions which were made NA for being low pop
final_gf <- d_stand_gf %>%
  dplyr::select(rgn_id, year, gapfilled, method)

readr::write_csv(final_gf, here::here(version_dir, "output", "wb_gdppcppp_rescaled_gf.csv"))

4.8 Compare data to previous year (for the same data year)

Use most recent data year shared by current and previous assessment.

comparison_year <- current_year - 2

old_gdppcppp <- here::here("globalprep", "ao",paste0("v", current_year -1), "output", "wb_gdppcppp_rescaled.csv") %>%
  readr::read_csv() %>% dplyr::rename(old_value=value) %>%  dplyr::filter(year == comparison_year)


summary(old_gdppcppp) # 20 NAs  

region_data()


compare <- here::here("globalprep", "ao", paste0("v", current_year), "output", "wb_gdppcppp_rescaled.csv") %>% 
  readr::read_csv() %>%
  dplyr::filter(year == comparison_year) %>% 
  dplyr::left_join(old_gdppcppp, by = "rgn_id") %>% 
  dplyr::select(rgn_id, value, old_value) %>%
  dplyr::mutate(difference = value - old_value) %>% 
  left_join(rgns_eez)
summary(compare) # still 20 NAs - this is because of converting unpopulated/low population regions to NAs


p1 <- ggplot(compare, aes(x = value, y = old_value, labels = rgn_name)) +
  geom_point() +
  geom_abline(slope = 1, intercept = 0, color = "red") +
  labs(title = paste0("Data year ", comparison_year, " -", "v", current_year-1, " vs ", version_year),
       x = version_year, y = paste0("v", current_year -1)) +
  theme_minimal()

ggplotly(p1)

4.9 Compare changes from this year to last year

old_gdppcppp <-  here::here("globalprep", "ao", paste0("v", current_year), "output", "wb_gdppcppp_rescaled.csv")  %>% 
  readr::read_csv() %>% 
  dplyr::rename(old_value=value) %>% 
  dplyr::filter(year == current_year -2)
summary(old_gdppcppp) # 20 NAs  

compare <- here::here("globalprep", "ao", paste0("v", current_year), "output", "wb_gdppcppp_rescaled.csv") %>% 
  readr::read_csv() %>%
  dplyr::filter(year == current_year-1) %>% 
  dplyr::left_join(old_gdppcppp, by = "rgn_id") %>% 
  dplyr::select(rgn_id, value, old_value) %>%
  dplyr::mutate(difference = value - old_value) %>% 
  left_join(rgns_eez)
summary(compare) # still 20 NAs - this is because of converting unpopulated/low population regions to NAs


p1 <- ggplot(compare, aes(x = value, y = old_value, labels = rgn_name)) +
  geom_point() +
  geom_abline(slope = 1, intercept = 0, color = "red") +
  labs(title = paste0("Current vs Previous year", "-", version_year),
       x = current_year -1, y = current_year-2) +
  theme_minimal()
### if anything was off of abline then something went wrong 
### however in v2019 data were positively skewed and we attributed this to source data changes. 
ggplotly(p1)